@niftyトップ

辞書、事典、用語解説などを検索できる無料サービスです。

ゴム

ブリタニカ国際大百科事典 小項目事典

ゴム
rubber
次のような性質をもっているか,または与えることのできる高分子物質をいう。 (1) 室温において小さい応力で相当に大きい変形を起し,その変形から応力を除くと急速にほとんどもとの形まで戻ること。 (2) 熱および中庸の圧力を加えることにより恒久的な形に再成形することが容易にできないこと。ゴムという用語は,ゴムから製造される製品にも使われる。なお最近開発された高温において可塑性であり常温では弾性を示す熱可塑性ゴム thermoplastic rubberは上記 (2) の条件は満たさないが,ゴムとして考えることになっている。 (→ガム )  

出典:ブリタニカ国際大百科事典 小項目事典
Copyright (c) 2014 Britannica Japan Co., Ltd. All rights reserved.
それぞれの記述は執筆時点でのもので、常に最新の内容であることを保証するものではありません。

デジタル大辞泉

ゴム(Ghom)
イラン北西部、ゴム州の都市。同州の州都テヘラン南方約135キロメートルに位置する。イスラム教シーア派の巡礼地。人口、行政区96万(2006)。コムクム

出典:小学館
監修:松村明
編集委員:池上秋彦、金田弘、杉崎一雄、鈴木丹士郎、中嶋尚、林巨樹、飛田良文
編集協力:田中牧郎、曽根脩
(C)Shogakukan Inc.
それぞれの用語は執筆時点での最新のもので、常に最新の内容であることを保証するものではありません。

世界大百科事典 第2版

ゴム
植物の分泌物から得られ,一般にゴムまたはガムと呼ばれている物質には次の3種がある。(1)ガムgumといわれる無定形物質。この代表的なものがアラビアゴムgum arabicおよびトラガントゴムgum traganth(トラガカントゴムgum tragacanth)である。主成分は種々の多糖類がさまざまな割合で結合した高分子物質で,水に入れるとコロイド溶液となるか,著しく膨潤し粘りけを示す。アルコールには不溶。

出典:株式会社平凡社
Copyright (c) Heibonsha Limited, Publishers, Tokyo. All rights reserved.

日本大百科全書(ニッポニカ)

ゴム
ごむ
わずかな力で大きく伸び、外力を除くとほとんど瞬間的に元に戻る物質をいう。弾性率が小さく、変形の範囲すなわち弾性限界が非常に大きい。ゴム弾性体あるいは高弾性体(エラストマー)ともいう。その化学構造は、非晶性の鎖状高分子が適当な分子間架橋した三次元網目状巨大分子である。架橋度が大きくなると弾性率が増大し、弾性限界が低下してプラスチックに近づく。また、ゴムは一種の準安定状態にあり、架橋点間の分子鎖の部分的な回転や並進運動が可能である。ガラス転移温度以下になると、これら分子鎖の運動は凍結され、ガラス状態になり、ゴム弾性は失われる。このような挙動から、ゴム弾性はエントロピー弾性ともいわれる(図A表1)。
 ゴムという日本語はラテン語のgummiに由来するオランダ語gomの音訳である。漢字では護謨と書く。元来は樹皮から分泌する粘りのある樹脂状物質をよんだ語である。アラビアゴムやトラガカントゴムなど多糖類からなる非晶性高分子がある。日本では弾性ゴムgum elasticに対して単にゴムとよぶようになった。ゴムは資源によって天然ゴムと合成ゴムに分類される。天然ゴムと合成ゴムは21世紀に入ってほぼ4対6の割合で生産され、いずれも増加傾向であり、2011年の時点で、世界の合計生産量は約2600万トンに達した。本項では、天然ゴムについて記述する。[福田和吉]

天然ゴムnatural rubber

パラゴムノキすなわちヘベア(学名:Hevea brasiliensis)の樹皮の切り口から流出するラテックスとよばれる乳白色の液体を凝固して得られる生ゴム、および生ゴムの加硫によって製造されるゴム製品など、天然に産出するゴムの総称。原産地はブラジルのアマゾン流域である。ゴムが文明社会に知られたのは、コロンブスが15世紀末、2回目に航海したときからであるといわれる。一般に普及したのは、1735年フランスのコンダミンCharles Marie de La Condamine(1701―1774)が、ペルーでへべーとよばれる木からとれる樹液が衣服や靴の防水の役目を果たしているという報告書と黒い固まりをパリに送ってからである。彼はこれを涙を出す(o-chu)木(caa)を意味する原住民の語に由来してカウチュークcaoutchoucと命名した。ドイツ語でも、天然ゴムはKautschukとよばれる。英語のラバーrubberは1770年イギリスのジョセフ・プリーストリーが弾性ゴムの消しゴムとしての有用性をみつけて以来、こする(rub)ものという語が物質名となったものである。
 天然ゴムは初めアマゾン流域の野生のゴムノキから採取されており、ブラジルは独占を守るためにパラゴムノキの種子や苗木の国外持ち出しを禁止していた。1876年イギリスのウィッカムHenry Wickham(1846―1928)は野生の種子を巧妙に本国へ持ち帰った。この種子がキュー王立植物園で、発芽・育成され、苗木がマレー半島などへ送られた。その後、東南アジアにおいてパラゴムノキの栽培が軌道に乗り、発展して多量に供給されるようになった。20世紀後半には世界の天然ゴムの90%以上が東南アジアで生産されている。世界の生産量は2007年には1000万トンを超え、そのうちタイ、インドネシアおよびマレーシアの3か国で70%を占めている。
 天然ゴムの利用は、アメリカのグッドイヤーが1839年加硫法を発明してから大きく発展した。1888年ダンロップが空気入りタイヤを発明した。20世紀に入って、カーボンブラックのゴムに対する大きな補強効果がみいだされ、オーエンスレーガーGeorge Oenslager(1873―1956)が加硫促進剤を発見し、ゴム製品の加工性と耐久性が著しく改善した。自動車用タイヤの需要が増加するとともに、ゴム工業は大規模に発展した。[福田和吉]

生ゴムの採取

ゴムノキは、高温多湿で気温・雨量が季節により変化せず、強風の吹かない地方が生育に適している。樹高は25~30メートルに達し、植えてから5~7年でゴムを採取することができる。樹齢13~21年が採取の最盛期である。生産量の増加は栽培面積の増加とゴムノキの品種改良による。
 ゴムノキの樹皮に傷をつける(タッピング)と樹液が流出してくる。この乳化液はフィールドラテックス(新鮮ラテックス)とよばれ、ゴム成分が平均直径1マイクロメートルの粒子として懸濁している(表2)。このゴム成分は凝固し、生ゴムとして分離するか、乳濁液のまま安定剤を加えて濃縮し、ラテックスLatexとして出荷する。生ゴムは、(1)視覚格付けゴム(VGR:Visual Graded Rubber)および(2)技術的格付けゴム(TSR:Technically Specified Rubber)の2種がある。VGRの一つはフィールドラテックスにギ酸などの有機酸を加えてゴム分を凝固し、洗浄脱水乾燥した後、波状成形ロールを通してシート状とし、燻煙(くんえん)したアメ色から褐色のスモークドシート(RSS:Ribbed Smoked Sheet)である。VGRの他の一つは、酸性亜硫酸ナトリウム(防カビ剤)を加えて凝固させ、ロールにかけて縮緬(ちりめん)状にした後、熱風乾燥した淡黄色のペールクレープである。これらのシートを重ねてプレス成形し、ほぼ50センチメートルの直方体(ベールとよばれ、標準重量が111キログラム)として出荷される。TSRは凝固したゴム分を機械的に粉砕し、水洗、熱風乾燥、プレス成型してポリエチレンシートに包装し、標準の大きさが70×40×15センチメートルの形(ブロックゴムとよばれ、重量35キログラム)で出荷される。ラテックスはフィールドラテックスにアンモニアを安定剤として加え、遠心分離機にかけて濃度を60%に引き上げた濃縮液として出荷される(図B)。[福田和吉]

成分

天然ゴムの主成分は分子量10万~20万のシス-1,4-ポリイソプレンである。生ゴムは一部結合して分子量100以上の高分子が混合している。生ゴムはベンゼンやクロロホルムに可溶で熱可塑性を示す。輪ゴムに似た感じの物質であり、10℃以下では硬くなり、零下70℃になるとガラス状態になる。硫黄(いおう)で加硫すると鎖状高分子間に架橋ができて強靭(きょうじん)なゴム弾性を示すようになる。天然ゴムには6%程度のタンパク質や脂質、糖質、無機物などの非ゴム成分が含まれている(表3)。[福田和吉]

ゴムの加工

生ゴムからゴム製品に至る工程は、(1)素練り、(2)配合(混練り)、(3)成形、(4)加硫の順である。加工の際にゴム分とほぼ同量の配合剤が加えられる(図C)。
(1)素練り 生ゴムは素練りすると発熱を伴って分子量低下がおこり、可塑性が増加して混和性がよくなる。素練り法には、回転速度の違う2本のロールの間に生ゴムを繰り返し通すロール法、2個のローターが胴体の中で互いに反対方向に回転しローター間および両ローターと胴体の間で生ゴムを練るバンバリーミキサー法、およびゴードンプラスチケーターとよばれる大型の押出し機を使う方法がある。素練りしたゴムの可塑性の測定には、回転円板式のムーニー粘度計や、圧力と流量から流動特性を求めるフローテスターなどが使われる。
(2)配合(混練り) 素練りを終わり混和性の増加したゴムは各種配合剤と混合する。配合剤には加硫剤、加硫促進剤、軟化剤、老化防止剤、補強剤、充填(じゅうてん)増量剤、着色剤などがある。一般に使用される加硫剤は硫黄であり、2~3.5%程度加えられる。加硫促進剤は、加硫温度を下げ、加硫時間を短縮して製品の質をよくする作用がある。これには有機促進剤が用いられ、グアニジン系、チウラム系、チアゾール系、チオユリア系、スルフェンアミド系、ジチオカルバミン酸系などがある。軟化剤は、ゴムの加工を容易にして配合剤の分散をよくするために加えられるもので、鉱油、石油樹脂、動植物油、脂肪酸、パインタール(松脂を加えたトール油)などがある。老化防止剤は、ゴム製品が表面に亀裂(きれつ)を生じたり、もろくなったり、べとつくようになるのを防止する。このような老化は、ゴムが光、熱、酸素、オゾンなどの作用で自動酸化するためにおこるので、芳香族アミンやフェノール類などの酸化防止剤が老化防止剤として使われる。また、ベンゾイミダゾール類、アミンとアルデヒドあるいはケトンとの反応物などの老化防止剤もある。補強剤・充填増量剤は、ゴム製品に必要な硬度、引張り強度、耐摩耗性を与えるため生ゴムに対して40~50%加えられる。補強剤としてはカーボンブラック(油煙、煤(すす))がもっとも効果的である。微粉状シリカ(含水二酸化ケイ素)はホワイトカーボンとよばれ、白色あるいは着色ゴム用の補強剤である。そのほか粘土、タルク、炭酸カルシウム、珪藻土(けいそうど)なども用いられる(表4)。
(3)成形 各種の配合剤を混練りし終わったゴムは目的物に成形される。カレンダーロールでシート状およびゴム引き布に成形され、押出し機でチューブや棒や電線被覆に成形され、金型に入れて目的の形に成形される。
(4)加硫 成形物は円筒形耐圧缶中、直接加圧水蒸気で加熱する直接蒸気加硫か、二重加硫缶中、間接的に加熱する熱空気加硫によってゴム製品になる。加硫条件は軟質ゴムでは145℃で15~50分である。また、プレス機、トランスファー成形機、射出成形機を使って、成形と加硫を同時に行う方法もある。[福田和吉]

用途

天然ゴムはタイヤ用にもっとも多く用いられ、ラジアルタイヤやバス、トラック、トラクター、航空機などのタイヤの使用比率が高い。ついでベルトやホース、空気ばねなどの工業用品に用いられる。ラテックスはタイヤコードのディッピング(含浸加工)、糸ゴム、ゴム手袋、履き物、ゴム引布、医療衛生用品、運動用品および接着剤などに使用されるが、量的比率は低い。[福田和吉]
天然ゴム誘導体
天然ゴムの化学反応によって各種誘導体が製造され、特殊な用途に使われていたが、各種合成ゴムの出現によってその用途は狭められている。天然ゴム誘導体には、塩素を付加した塩化ゴム、塩化水素を付加した塩酸ゴム(食品包装用フィルムとして使われる)、濃硫酸、有機スルホン酸、スルホクロリドを作用させてつくった環化ゴム、エポキシ化ゴム、メタクリル酸メチルなどをゴム分子に枝分れ重合したグラフト化ゴムなどがある。[福田和吉]
『田中康之・浅井治海著、日本化学会編『新産業化学シリーズ ゴム・エラストマー』(1993・大日本図書)』

出典:小学館 日本大百科全書(ニッポニカ)
(C)Shogakukan Inc.
それぞれの解説は執筆時点のもので、常に最新の内容であることを保証するものではありません。

化学辞典 第2版

ゴム
ゴム
rubber

小さな力で大きな伸び縮みをする性質(ゴム弾性)をもつ物質.日本語の“ゴム”は,樹皮から分泌する乳状の粘りのある液体,または樹脂を意味する“gum”(ラテン語gummiからの英語)に由来していて,“アラビアゴム”,その水溶液の“ゴムのり”などにも用いられているが,弾性ゴム(gum elastic)に対して用いられるのが一般的になった.C.M. de la Condamineが,1735年,アマゾン流域の調査報告で弾性ゴムに名づけた,“涙を出す木”を意味する原住民の語に由来した“caoutchouc”というフランス語が最初の命名であり,ドイツ語でも“Kautchuk”が用いられている.英語の“rubber”は,J. Priestley(プリーストリー)が,この弾性ゴムが消しゴムとして有用であることを提唱して以来,“こする物”という語がこの物質の名となってしまった.ヨーロッパにはじめに送られたゴムは,アマゾン流域の野生のゴム樹から得られた生ゴムであるが,この利用に関しては,1830年ごろのT. Hancockのゴム練り機械の発明と,それに続くC. Goodyearの加硫法の発明とによって大きく発展しはじめた.1888年,J.B. Dunlopが自転車用の空気入りタイヤを発明して以来,ゴム工業の発展はタイヤを主力とし,とくに自動車工業の発展とともに大規模になった.一方,原料ゴムは1880年前後のイギリスによる東南アジアにおけるヘビア種のゴムの木の栽培の成功以来(栽培ゴム(plantation rubber)という),原産地アマゾン流域にかわって全世界に供給されるようになった.天然ゴムの主体が,イソプレン単位が線状に結合したものであることが知られて以来,イソプレンからゴムを合成する試みが行われ,1909年にはドイツのByer社が熱重合で,1910年にはC.D. Harriesが金属ナトリウムを触媒とする重合でゴム状物質を得ているが,その性質は天然ゴムに相当劣っていた.その後,実用に供された合成ゴムはイソプレンからではなく,ブタジエンクロロプレンの重合体であった.とくに第二次世界大戦中,アメリカは大規模な合成ゴム製造のプロジェクトを推進し,主としてブタジエンとスチレンなどとの共重合による合成ゴム(GR-S,GR-Nなど)を開発した.これらの合成ゴムは,天然ゴム代用品の域を越えた新しい工業材料としての価値が認められ,戦後ますます合成ゴムの開発,製造は発展し続けた.しかし,天然ゴムと同じ組成構造をもつ合成天然ゴム,cis-1,4-ポリイソプレンの合成は,1954年に至ってはじめて実現した.

出典:森北出版「化学辞典(第2版)」
東京工業大学名誉教授理博 吉村 壽次(編集代表)
信州大学元教授理博 梅本 喜三郎(編集)
東京大学名誉教授理博 大内 昭(編集)
東京大学名誉教授工博 奥居 徳昌(編集)
東京工業大学名誉教授理博 海津 洋行(編集)
東京工業大学元教授学術博 梶 雅範(編集)
東京大学名誉教授理博 小林 啓二(編集)
東京工業大学名誉教授 工博佐藤 伸(編集)
東京大学名誉教授理博 西川 勝(編集)
東京大学名誉教授理博 野村 祐次郎(編集)
東京工業大学名誉教授理博 橋本 弘信(編集)
東京工業大学教授理博 広瀬 茂久(編集)
東京工業大学名誉教授工博 丸山 俊夫(編集)
東京工業大学名誉教授工博 八嶋 建明(編集)
東京工業大学名誉教授理博 脇原 將孝(編集)

Copyright © MORIKITA PUBLISHING Co., Ltd. All rights reserved.
それぞれの項目は執筆時点での最新のもので、常に最新の内容であることを保証するものではありません。

栄養・生化学辞典

ゴム
 →ガム

出典:朝倉書店
Copyright (C) 2009 Asakura Publishing Co., Ltd. All rights reserved.
それぞれの用語は執筆時点での最新のもので、常に最新の内容であることを保証するものではありません。

ゴム」の用語解説はコトバンクが提供しています。

ゴムの関連情報

他サービスで検索

(C)The Asahi Shimbun Company /VOYAGE MARKETING, Inc. All rights reserved.
No reproduction or republication without written permission.

アット・ニフティトップページへ アット・ニフティ会員に登録

ウェブサイトの利用について | 個人情報保護ポリシー
©NIFTY Corporation