●スピン
ブリタニカ国際大百科事典 小項目事典
スピン
spin
出典:ブリタニカ国際大百科事典 小項目事典
Copyright (c) 2014 Britannica Japan Co., Ltd. All rights reserved.
それぞれの記述は執筆時点でのもので、常に最新の内容であることを保証するものではありません。
スピン
出典:ブリタニカ国際大百科事典 小項目事典
Copyright (c) 2014 Britannica Japan Co., Ltd. All rights reserved.
それぞれの記述は執筆時点でのもので、常に最新の内容であることを保証するものではありません。
知恵蔵
スピン
(尾関章 朝日新聞記者 / 2007年)
出典:(株)朝日新聞出版発行「知恵蔵」
デジタル大辞泉
スピン(spin)
1 回転すること。旋回すること。「凍結路で車が
2 フィギュアスケートで、氷上の一点で体の中心線を軸としてこまのように体を回転させること。ジャンプなどとともに、採点要素の一つ。アップライトスピン・シットスピン・キャメルスピンに大別。
3 ダンスで、体を回転させること。
4 テニス・卓球・ゴルフなどで、ボールの回転。「
5 飛行機の、きりもみ。
6 素粒子の基本的な量子数の一。古典的には粒子の自転による角運動量とみなされる。
出典:小学館
監修:松村明
編集委員:池上秋彦、金田弘、杉崎一雄、鈴木丹士郎、中嶋尚、林巨樹、飛田良文
編集協力:田中牧郎、曽根脩
(C)Shogakukan Inc.
それぞれの用語は執筆時点での最新のもので、常に最新の内容であることを保証するものではありません。
スピン
出典:小学館
監修:松村明
編集委員:池上秋彦、金田弘、杉崎一雄、鈴木丹士郎、中嶋尚、林巨樹、飛田良文
編集協力:田中牧郎、曽根脩
(C)Shogakukan Inc.
それぞれの用語は執筆時点での最新のもので、常に最新の内容であることを保証するものではありません。
サーフィン用語集
すぴん【スピン spin】
出典:(株)デジサーフ、(株)セキノレーシングスポーツ
Copyright(c)2006 i92surf.com All Rights Reserved.
それぞれの用語は執筆時点での最新のもので、常に最新の内容であることを保証するものではありません。
素粒子事典
スピン
ボソンは、崩壊後に偶数個のフェルミオン(0も偶数であることに注意)を含み、フェルミオンは奇数個のフェルミオンを含むので、崩壊前の粒子が、ボソンであるかフェルミオンであるかは、たいていの場合すぐにわかる。
出典:素粒子事典
(C) Copyright 1996-2010 Sadaharu UEHARA and Junpei SHIRAI
それぞれの用語は執筆時点での最新のもので、常に最新の内容であることを保証するものではありません。
パラグライダー用語辞典
スピン
出典:
Copyright (C) 2010 浜名湖パラグライダースクール All Rights Reserved.
それぞれの用語は執筆時点での最新のもので、常に最新の内容であることを保証するものではありません。
世界大百科事典 第2版
スピン【spin】
出典:株式会社平凡社
Copyright (c) Heibonsha Limited, Publishers, Tokyo. All rights reserved.
日本大百科全書(ニッポニカ)
スピン
すぴん
spin
素粒子またはその複合粒子のもつ固有の角運動量で量子論的な自由度である。古典物理的な描像では粒子の自転による角運動量と考えられる。運動する粒子の全角運動量は、軌道角運動量とこのスピン角運動量のベクトル和で表される。
原子スペクトルの多重項構造、すなわち原子のエネルギー準位の微細構造の特徴を理解するために、パウリは、原子の軌道を運動する電子に新しく二価性をもつ自由度を付加した。クローニッヒRalph Kronig(1904―1995)、ハウトスミット、ウーレンベックは、パウリの前記の考えを粒子の自転と解釈し、自転に基づく角運動量の大きさが、ħ(ディラック定数。プランク定数hを2πで割ったもので、エイチ・バーと読む)を単位にして1/2の値をとると考えた(第3軸成分は±1/2の値をとる)。また電荷をもつものが回転していれば円電流が生じ、それに比例する磁気モーメントが予想できる。この磁気モーメントの、ボーア磁子eħ/2mc(eは電子の電荷、mは同じく質量、cは光速度)を単位にして測った値をμとして、このμとħを単位として測った角運動量との比をg因子とよぶ。このg因子を2とすると、トーマスの効果も考慮して、原子のエネルギー準位の微細構造、さらにまたパウリの原理を加えることによって周期律を含めて原子の諸特徴をみごとに説明できることがみいだされた。
[小川修三・植松恒夫]
スピン演算子
量子力学では、物理量は状態関数に対する演算子として表現される。電子のスピンをどのように表すかという問題もパウリによって解決された。まず電子の状態を記述するシュレーディンガーの波動関数ψ(x)を2成分(2行1列の行列)
とすることによって、この波動関数に演算する次のような演算子S(=sx,sy,sz)、
を導入することができる。この演算子は、電子が原子の周りを回転することによる軌道角運動量L(=Lx,Ly,Lz)と同じ代数的性質を備えており、角運動量としての資格をもっている。しかし普通の軌道角運動量の値がħを単位にして整数値であるのに対し、スピンは半整数の値をもつこと、またg因子が軌道運動による部分については1であるのに対し、スピンについては2であるなど、単純な自転描像ではかならずしも簡単に理解ができるとは限らない面がある。これらの問題は、ディラックの相対論的電子論の提唱をまって解明されることになった。
一般にスピンの値がħを単位にして整数値をとる粒子をボソン、半整数値をとる粒子をフェルミオンという。前者はボース‐アインシュタイン統計、後者はフェルミ‐ディラック統計に従う。光子、グルーオン、ウィークボソンなどの力を媒介するゲージ粒子はスピンが1でボソン、物質を構成するクォークやレプトンはスピンが1/2でフェルミオンである。フェルミオンは同じ状態には1個の粒子しか存在できないというパウリの原理に従う。力の統一にはフェルミオンとボソンの間を関連づける超対称性とよばれる対称性が重要な働きをすると考えられている。
[小川修三・植松恒夫]
核スピン
原子核の構成要素の一つである陽子は、電子と同じくスピン1/2をもちパウリの原理を満たす粒子(フェルミ‐ディラック粒子)であることが、水素分子の比熱の問題の解明のなかで明らかになった。もう一つの要素である中性子も、電荷が0という点を除いて陽子と同じ性質をもつ。陽子・中性子を構成要素とする原子核は、これら粒子のスピンや軌道運動の合成による核全体の角運動量をもつ。これを核スピンというが、同時に構成要素の磁気モーメントの和からなる核磁気モーメントができる。この核磁気モーメントは、それと軌道電子の磁気モーメントとの相互作用により、原子のエネルギー準位のずれ、すなわち準位の超微細構造を与える。この構造から核のスピンを決定できる。
一方、核子は三つのクォークからなるが、核子のスピンがその構成要素のクォークやグルーオンにいかに担われているかが、偏極ビームおよび偏極ターゲットを用いた核子の深非弾性散乱の実験で研究されている。これまでのところ、素朴なクォーク模型の予想とは異なっており、クォークやグルーオンの固有のスピン以外に軌道角運動量からの寄与も含めて、核子スピンの起源の問題として追究されている。
[小川修三・植松恒夫]
『朝永振一郎著『スピンはめぐる』(1982・中央公論社)』▽『亀淵迪・原康夫・小寺武康編、朝永振一郎著『角運動量とスピン』(1989・みすず書房)』▽『久保謙一・鹿取謙二著『スピンと偏極』(1994・培風館)』▽『宮下精二著『岩波講座 物理の世界 物質科学の展開7 量子スピン系――不確定性原理と秩序』(2006・岩波書店)』
出典:小学館 日本大百科全書(ニッポニカ)
(C)Shogakukan Inc.
それぞれの解説は執筆時点のもので、常に最新の内容であることを保証するものではありません。
精選版 日本国語大辞典
スピン
出典:精選版 日本国語大辞典
(C)Shogakukan Inc.
それぞれの用語は執筆時点での最新のもので、常に最新の内容であることを保証するものではありません。
化学辞典 第2版
スピン
スピン
spin
G.E. UhlenbeckおよびS. Goudsmitは,磁場中での原子スペクトルの分裂の仕方を説明するために,電子がその軌道運動の自由度のほかに自転の自由度としてスピン角運動をもつことを提唱したが,のちにP.A.M. Diracが相対論的電子論の立場から,スピンが電子のもつ内部自由度の一つであることを導き出した.量子力学的にはスピンsは角運動量演算子であり,s2 の固有値は,プランク定数hを2πで割ったℏを使うと,
s(s + 1)ℏ2
で与えられる.sはスピン量子数とよばれ,その値は1/2である.原子核を構成する陽子や中性子もスピンをもっており,それらのスピン量子数は電子と同じく1/2である.
出典:森北出版「化学辞典(第2版)」
東京工業大学名誉教授理博 吉村 壽次(編集代表)
信州大学元教授理博 梅本 喜三郎(編集)
東京大学名誉教授理博 大内 昭(編集)
東京大学名誉教授工博 奥居 徳昌(編集)
東京工業大学名誉教授理博 海津 洋行(編集)
東京工業大学元教授学術博 梶 雅範(編集)
東京大学名誉教授理博 小林 啓二(編集)
東京工業大学名誉教授 工博佐藤 伸(編集)
東京大学名誉教授理博 西川 勝(編集)
東京大学名誉教授理博 野村 祐次郎(編集)
東京工業大学名誉教授理博 橋本 弘信(編集)
東京工業大学教授理博 広瀬 茂久(編集)
東京工業大学名誉教授工博 丸山 俊夫(編集)
東京工業大学名誉教授工博 八嶋 建明(編集)
東京工業大学名誉教授理博 脇原 將孝(編集)
Copyright © MORIKITA PUBLISHING Co., Ltd. All rights reserved.
それぞれの項目は執筆時点での最新のもので、常に最新の内容であることを保証するものではありません。
「スピン」の用語解説はコトバンクが提供しています。
●スピンの関連情報