@niftyトップ

辞書、事典、用語解説などを検索できる無料サービスです。

フラクタル【ふらくたる】

知恵蔵

フラクタル
規模の尺度を変えても同じ形が現れる自己相似の構造。B.マンデルブローが名づけた。一例樹木の枝分かれは小枝分岐にそっくりで、さらに葉脈の広がりにも似ている。山の稜線や海岸線などにも同様の構造がある。こうした輪郭の複雑さの度合いを表すのが、フラクタル次元。面上に描かれた輪郭は複雑になるほど1次元から2次元に近づく。
(尾関章 朝日新聞記者 / 2007年)

出典:(株)朝日新聞出版発行「知恵蔵」

デジタル大辞泉

フラクタル(fractal)
部分と全体とが同じ形となる自己相似性を示す図形。
[補説]破片分割ラテン語からの造語

出典:小学館
監修:松村明
編集委員:池上秋彦、金田弘、杉崎一雄、鈴木丹士郎、中嶋尚、林巨樹、飛田良文
編集協力:田中牧郎、曽根脩
(C)Shogakukan Inc.
それぞれの用語は執筆時点での最新のもので、常に最新の内容であることを保証するものではありません。

世界大百科事典 第2版

フラクタル【fractal】
数学的な形の名称。自然の中にある形は,初等幾何学で教えられた正方形円周,三角形などとは一見かけはなれたものが多い。例えば雲の形,リアス海岸線などはこれら初等幾何の図とはおよそかけはなれている。初等幾何のほうから円周を代表にとり,自然の形の代表としてリアス海岸線をとってみよう。まず円周は次のような特徴がある。全体としては曲がっているけれども,もしこれを細かい円弧に分解すると,十分細かく分解すれば,部分である円弧は線分とほとんど見分けがつかなくなる(つまり全体として曲がっているという性質が分解で失われていく)。

出典:株式会社平凡社
Copyright (c) Heibonsha Limited, Publishers, Tokyo. All rights reserved.

ブリタニカ国際大百科事典 小項目事典

フラクタル
fractal
自己相似性をもつ図形。地図上のリアス海岸線の形などのように,一部分を拡大すると元の図形と似た図形になる性質をもつ。フラクタルには,次のようにして,フラクタル次元という数が定義できる。一つの図形を大きさが rN 個の要素(線分,正方形,立方体など)で覆い,r を小さくすると NrD が比例するとき,D をフラクタル次元という。フラクタルは,海岸線の長さの測定に関連して,ブノア・マンデルブローによって 1980年に提唱されたもので,これを基礎概念とした幾何学をフラクタル幾何学という。ちなみに,三陸海岸のフラクタル次元は約 1.35である。

出典:ブリタニカ国際大百科事典 小項目事典
Copyright (c) 2014 Britannica Japan Co., Ltd. All rights reserved.
それぞれの記述は執筆時点でのもので、常に最新の内容であることを保証するものではありません。

日本大百科全書(ニッポニカ)

フラクタル
ふらくたる

自然界には、たとえばリアス式海岸の海岸線や、空に浮かぶ雲の形、河川の本支流の形、動物の体内に広がっている血管の分布の形、あるいは樹木の枝の形など、数学の初等幾何で扱う円や三角形、球、直方体などの整った形とは異なって不規則で複雑な図形が至る所に存在する。数学の古典的な微分法は、どんなに複雑なようにみえる形(曲線)であっても微分が可能である、つまり、全体としては曲がっていても、それを十分に細かく分解していけば、細分された部分はやがて直線と見分けがつかないほどになってしまう、いいかえれば十分に細分された微小部分は直線で近似的に表すことができる、という前提のもとに発展してきた。ところが前記のような自然界にみられる形はその図形を分解していって、その一部を取り出して拡大してみると、元の全体の図形と同じような複雑な図形を依然としてもっている。

 いま、どのように分解してもその部分が元の全体と同じ形を備えている図形を数学的に考える。このつねに元の形の縮小した形を備えているという性質を自己相似性という。自己相似性を備えた図形は、その微小部分が線分に近似できないから微分が不可能である。フラクタルとはそのような自己相似性を備え、どこでも微分が定義できないような形(集合)をいい、それを扱う数学をフラクタル幾何学という。

 このことばはフランスのマンデルブロB.B.Mandelbrot(1924― )がつくったもので、語源はラテン語のfractasであり、「破片」「分割」を意味する。

 フラクタルは定量的にはフラクタル次元(相似性次元)で表される。この次元は普通にいう一次元(線)、二次元(平面)、三次元(立体)といった整数で表される次元と異なり、非整数の値も含む次元であり、一般的には次元の高い図形のほうがより複雑で不規則な図形といえる。フラクタル図形は、現在、コンピュータで容易に描くことができ、コンピュータ・グラフィクスの分野で発展した観がある。事実、フラクタルは微分不可能であるため、コンピュータによる解析やシミュレーションが不可欠であり、コンピュータとともに発展した幾何学といえる。その対象には前記のような自然界のさまざまな形のほか、天体の分布、地震の発生頻度、ランダムウォーク、流体や高分子構造などきわめて広範囲であり、その研究と成果が注目される。

[栗原 裕]

『高安秀樹著『フラクタル』(1986・朝倉書店)』

出典:小学館 日本大百科全書(ニッポニカ)
(C)Shogakukan Inc.
それぞれの解説は執筆時点のもので、常に最新の内容であることを保証するものではありません。

精選版 日本国語大辞典

フラクタル
〘名〙 (fractal) どのように分解してもその部分が元の全体と同じ形を備えていて、微分が不可能な図形。フランスの数学者マンデルブロー(B. B. Mandelbrot)がラテン語の fractas (破片・分割の意)をもとにつくった語。

出典:精選版 日本国語大辞典
(C)Shogakukan Inc.
それぞれの用語は執筆時点での最新のもので、常に最新の内容であることを保証するものではありません。

化学辞典 第2版

フラクタル
フラクタル
fractal

1960年代にフランスの数学者Benoit B.Mandelbrotにより開拓された数学概念で,自己相似性を示す集合のこと.フラクタル集合Fは相似である各要素 Fi の合併集合であるが,Fi も同様に相似な要素に分解され,これが無限に繰り返される.たとえば,正三角形において各辺の二等分点を直線で結べば4個の正三角形ができる.中央の正三角形を除く残りの3個の正三角形に対して同様の操作を行い,この操作を無限に繰り返すと,入れ子構造の不思議な図形ができる(Sierpiński gasket).これも一つのフラクタルである.複雑に入り込んだ多孔質物質の構造や,眺望した峰々の様子など,自然界にもフラクタルに似た図形が見られる.

出典:森北出版「化学辞典(第2版)」
東京工業大学名誉教授理博 吉村 壽次(編集代表)
信州大学元教授理博 梅本 喜三郎(編集)
東京大学名誉教授理博 大内 昭(編集)
東京大学名誉教授工博 奥居 徳昌(編集)
東京工業大学名誉教授理博 海津 洋行(編集)
東京工業大学元教授学術博 梶 雅範(編集)
東京大学名誉教授理博 小林 啓二(編集)
東京工業大学名誉教授 工博佐藤 伸(編集)
東京大学名誉教授理博 西川 勝(編集)
東京大学名誉教授理博 野村 祐次郎(編集)
東京工業大学名誉教授理博 橋本 弘信(編集)
東京工業大学教授理博 広瀬 茂久(編集)
東京工業大学名誉教授工博 丸山 俊夫(編集)
東京工業大学名誉教授工博 八嶋 建明(編集)
東京工業大学名誉教授理博 脇原 將孝(編集)

Copyright © MORIKITA PUBLISHING Co., Ltd. All rights reserved.
それぞれの項目は執筆時点での最新のもので、常に最新の内容であることを保証するものではありません。

フラクタル」の用語解説はコトバンクが提供しています。

フラクタルの関連情報

他サービスで検索

(C)The Asahi Shimbun Company /VOYAGE MARKETING, Inc. All rights reserved.
No reproduction or republication without written permission.

アット・ニフティトップページへ アット・ニフティ会員に登録

ウェブサイトの利用について | 個人情報保護ポリシー
©NIFTY Corporation