@niftyトップ

辞書、事典、用語解説などを検索できる無料サービスです。

ラマン効果【ラマンこうか】

ブリタニカ国際大百科事典 小項目事典

ラマン効果
ラマンこうか
Raman effect
物質に単色光を当てたとき,その散乱光中に照射光の波長と少し違った波長の光が混っている現象。 1928年 C.V.ラマンが発見した。照射光のエネルギーの一部が物質を構成している原子振動や,分子の回転のためのエネルギーとして使われ,残りのエネルギーが光として散乱されるときは波長の長い光が散乱光に混る。逆に物質のもつエネルギーが光のエネルギーに加わるときには波長の短い散乱光が混る。これによって物質の性質や,エネルギー状態を研究することができる。

出典:ブリタニカ国際大百科事典 小項目事典
Copyright (c) 2014 Britannica Japan Co., Ltd. All rights reserved.
それぞれの記述は執筆時点でのもので、常に最新の内容であることを保証するものではありません。

デジタル大辞泉

ラマン‐こうか〔‐カウクワ〕【ラマン効果】
物質に単色光を当てたとき、散乱光中に、当てた光のほかに波長の異なる光が含まれている現象。物質中の分子の振動・回転状態により、光がエネルギーを付加または除去されて起こる。分子構造の研究に利用。1928年にラマンが発見。

出典:小学館
監修:松村明
編集委員:池上秋彦、金田弘、杉崎一雄、鈴木丹士郎、中嶋尚、林巨樹、飛田良文
編集協力:田中牧郎、曽根脩
(C)Shogakukan Inc.
それぞれの用語は執筆時点での最新のもので、常に最新の内容であることを保証するものではありません。

法則の辞典

ラマン効果【Raman effect】
単色光線を透明な物体に照射したとき,光量子が分子によって非弾性的に散乱を受ける(弾性散乱ならばレイリー散乱*という).この結果,分子の振動・回転領域のエネルギー準位を励起してエネルギーを与えると,もとの光量子は励起レベルに相当するエネルギー分(⊿E)だけ低波数にシフトした新しいスペクトル線(hν-⊿E)を与える.

もともと励起状態にあった分子が光量子を散乱すると,こんどは高波数側にシフトした新しいスペクトル線hν+⊿E)が生じる.これがラマン効果と呼ばれる.低波数側の線をストークス線*,高波数側の線を「アンチストークス線」という.

出典:朝倉書店
Copyright (C) 2009 Asakura Publishing Co., Ltd. All rights reserved.
それぞれの用語は執筆時点での最新のもので、常に最新の内容であることを保証するものではありません。

世界大百科事典 第2版

らまんこうか【ラマン効果】

出典:株式会社平凡社
Copyright (c) Heibonsha Limited, Publishers, Tokyo. All rights reserved.

大辞林 第三版

ラマンこうか【ラマン効果】
光を物質に照射するとき、散乱光の中に入射光とは振動数の異なる光が混じって観測される現象。これは、入射光と物質との間でエネルギーの授受が行われ、原子・分子の振動状態・回転状態が変化するために起こる。原子・分子構造や性質の研究に利用される。

出典:三省堂
(C) Sanseido Co.,Ltd. 編者:松村明 編 発行者:株式会社 三省堂 ※ 書籍版『大辞林第三版』の図表・付録は収録させておりません。 ※ それぞれの用語は執筆時点での最新のもので、常に最新の内容であることを保証するものではありません。

日本大百科全書(ニッポニカ)

ラマン効果
らまんこうか
単色光を気体、液体または固体に当てたとき、散乱光の中にわずかに波長の違う光を生ずる現象。1928年インドの物理学者C・V・ラマンによって発見された。散乱光の中のおもな成分は、入射光と同じ波長をもっており、レイリー散乱光とよばれる。ラマン効果の原因は、照射された物質の分極率が、物質中の原子の振動や回転運動によって変動しているためで、入射光と物質とでつくられた状態がそれらによって変調された結果、散乱光の中に振動数の違った成分をもつようになったのである。一般にラマン散乱光の波長は入射光の波長より長い。これをストークス光という。しかし、物質の温度が高い場合には、入射光より短波長の散乱光を生ずる場合もあり、アンチ・ストークス光とよばれる。
 ラマン散乱における波長の変化、すなわち振動数の変化は、散乱の際に入射光の光子のエネルギーに振動・回転の量子エネルギーが付加または除去されたためで、その量子エネルギーが熱エネルギーに比べて大きいときには、物質からそのエネルギーが光のエネルギーに変換される確率はきわめて小さく、光のエネルギーが物質のほうに与えられるストークス光のみが観測される。ラマン散乱光の振動数変化量は、振動(または回転)量子エネルギーを示しているので、分子振動や固体中のフォノン(音子)の研究に利用される。ラマン・スペクトルはこの意味で赤外吸収スペクトルと同種の研究手段であるが、選択則が違うため両者は相補的な関係にある。レーザーの出現によってきわめて精密な実験が可能となり、ラマン散乱は赤外吸収スペクトル以上に広く活用されている。
 入射光の強度が強くなると、散乱光による誘導放射がおこるようになり、散乱光の強さが急激に増加する。これを誘導ラマン効果という。また入射光の波長が物質の吸収線の波長に近づくと、ラマン光の強さを増す。これを共鳴ラマン効果という。さらに、金、銀、銅などの金属表面に吸着した分子種で、ラマン散乱強度が通常から106倍程度の増大がみられる。これを表面増強ラマン効果という。[尾中龍猛・伊藤雅英]
『浜口宏夫・平川暁子編『ラマン分光法』(1988・学会出版センター)』

出典:小学館 日本大百科全書(ニッポニカ)
(C)Shogakukan Inc.
それぞれの解説は執筆時点のもので、常に最新の内容であることを保証するものではありません。

精選版 日本国語大辞典

ラマン‐こうか ‥カウクヮ【ラマン効果】
〘名〙 (ラマンは発見者 Raman の名から) 溶液による光の散乱において、散乱光の中に入射光と異なる波長の光を生じる現象。一九二八年、インドの物理学者ラマンによって発見された。

出典:精選版 日本国語大辞典
(C)Shogakukan Inc.
それぞれの用語は執筆時点での最新のもので、常に最新の内容であることを保証するものではありません。

化学辞典 第2版

ラマン効果
ラマンコウカ
Raman effect

単色光(振動数ν)を物質に照射したときの散乱光のうちに,レイリー散乱光(ν)のほかに,その物質に特有な振動数 ν0 だけνからずれた,(ν ± ν0)なる振動数の光がまざってくる現象をいう.1923年,A. Smekalにより,分子と光子との非弾性散乱として起こりうることが予言されていたが,1928年,C.V. Raman(ラマン)によりはじめて実測された.ラマン効果による散乱光のスペクトルをラマンスペクトル,そのスペクトル線をラマン線という.同じ ν0 のずれを示す二つの線のうち,ν - ν0 をストークス線,ν + ν0 を反ストークス線といい,反ストークス線は ν0 の値が増すにつれて急激に弱くなる.ラマン光は分子の振動,回転などのエネルギー準位間の遷移を伴った散乱光であって,ν0 はその遷移エネルギーに対応する振動数である.ラマン線の強度は,振動や回転にもとづく分子分極率の変化率によって決まる.したがって,赤外スペクトルとは一般に相反する傾向の選択則に従うから,赤外吸収とラマン効果とは,分子の振動,回転スペクトルの研究において相補的な役割をする.また,ラマン線の偏光解消度を測定すると,分極率変化の異方性に関する知識が得られるが,これは分子振動の帰属についての有用な情報となる.ラマン効果を測定するための励起用単色光源として,以前は水銀のスペクトル線が多く用いられ,散乱光の観測は写真測定によるのが一般的であったが,近年は種々のレーザーが好適な励起光源として用いられるようになり,微弱光測定技術の発展とあいまって,測定面での進歩はいちじるしい.赤外吸収スペクトルとともに分光分析の手段として広く用いられ,とくに前者に比べて水溶液での測定が容易であること,また遠赤外吸収に対応する低振動数のラマン線が測定しやすいなどの利点もある.

出典:森北出版「化学辞典(第2版)」
東京工業大学名誉教授理博 吉村 壽次(編集代表)
信州大学元教授理博 梅本 喜三郎(編集)
東京大学名誉教授理博 大内 昭(編集)
東京大学名誉教授工博 奥居 徳昌(編集)
東京工業大学名誉教授理博 海津 洋行(編集)
東京工業大学元教授学術博 梶 雅範(編集)
東京大学名誉教授理博 小林 啓二(編集)
東京工業大学名誉教授 工博佐藤 伸(編集)
東京大学名誉教授理博 西川 勝(編集)
東京大学名誉教授理博 野村 祐次郎(編集)
東京工業大学名誉教授理博 橋本 弘信(編集)
東京工業大学教授理博 広瀬 茂久(編集)
東京工業大学名誉教授工博 丸山 俊夫(編集)
東京工業大学名誉教授工博 八嶋 建明(編集)
東京工業大学名誉教授理博 脇原 將孝(編集)

Copyright © MORIKITA PUBLISHING Co., Ltd. All rights reserved.
それぞれの項目は執筆時点での最新のもので、常に最新の内容であることを保証するものではありません。

ラマン効果」の用語解説はコトバンクが提供しています。

ラマン効果の関連情報

他サービスで検索

(C)The Asahi Shimbun Company /VOYAGE MARKETING, Inc. All rights reserved.
No reproduction or republication without written permission.

アット・ニフティトップページへ アット・ニフティ会員に登録

ウェブサイトの利用について | 個人情報保護ポリシー
©NIFTY Corporation