●確率変数【かくりつへんすう】
ブリタニカ国際大百科事典 小項目事典
確率変数
かくりつへんすう
random variable
出典:ブリタニカ国際大百科事典 小項目事典
Copyright (c) 2014 Britannica Japan Co., Ltd. All rights reserved.
それぞれの記述は執筆時点でのもので、常に最新の内容であることを保証するものではありません。
デジタル大辞泉
かくりつ‐へんすう【確率変数】
出典:小学館
監修:松村明
編集委員:池上秋彦、金田弘、杉崎一雄、鈴木丹士郎、中嶋尚、林巨樹、飛田良文
編集協力:田中牧郎、曽根脩
(C)Shogakukan Inc.
それぞれの用語は執筆時点での最新のもので、常に最新の内容であることを保証するものではありません。
世界大百科事典 第2版
かくりつへんすう【確率変数 random variable】
出典:株式会社平凡社
Copyright (c) Heibonsha Limited, Publishers, Tokyo. All rights reserved.
日本大百科全書(ニッポニカ)
確率変数
かくりつへんすう
いろいろの値をとりうる変数Xがあって、それぞれの値をとる確率が決まっているときXを確率変数という。たとえば、さいころを投げたとき出る目の数をXと置けば、Xは1から6までの整数のどれかであり、どの値をとる確率も1/6であるからXは確率変数である。また宝くじを買ったとき、当せん金額をXとするとXは確率変数である。はずれた場合はXは0であり、当せんした場合は等級によってXの値は決まり、しかも、各場合の確率は決まっているからである。
確率変数Xのとりうる値がx1、x2、……であって、Xがxiである確率をpiとすればp1+p2+……=1である。このような確率変数を離散型という。これに対して、ある区間I(無限区間でもよい)のどの値もとりうるような確率変数を連続型という。詳しくいえば、区間Iで連続な関数f(x)が
を満たし、Iに含まれる任意の区間Jに対して、Xの値がJに属する確率が
で与えられるとき、Xを連続型の確率変数というのである。測度論的確率論では離散型および連続型を含む一般的な形で確率変数が定義される。この場合、確率変数Xは変数というよりむしろ関数というべきものである。すなわち、確率測度が与えられている標本空間で定義された可測関数のことを確率変数というのである。
[古屋 茂]
出典:小学館 日本大百科全書(ニッポニカ)
(C)Shogakukan Inc.
それぞれの解説は執筆時点のもので、常に最新の内容であることを保証するものではありません。
精選版 日本国語大辞典
かくりつ‐へんすう【確率変数】
出典:精選版 日本国語大辞典
(C)Shogakukan Inc.
それぞれの用語は執筆時点での最新のもので、常に最新の内容であることを保証するものではありません。
「確率変数」の用語解説はコトバンクが提供しています。
●確率変数の関連情報