@niftyトップ

辞書、事典、用語解説などを検索できる無料サービスです。

臨界状態【りんかいじょうたい】

ブリタニカ国際大百科事典 小項目事典

臨界状態
りんかいじょうたい
critical state
(1) 一般に物質や現象の性質が質的に変化する限界の状態。たとえば,粗い面上に置かれた物体に働く力を次第に大きくしていって静止摩擦力が最大となった状態をいう。作用する力がこれ以上大きくなると物体は動きはじめて運動摩擦力が働くことになる。他に,光学的に密な媒質から粗な媒質との境界面に光を入射させ,入射角を徐々に大きくしていくとき,全反射が始る入射角最大の状態も臨界状態で,このときの入射角を臨界角という。また化学反応や核反応において,反応のポテンシャルエネルギー鞍点で与えられる状態を臨界状態または遷移状態という。 (2) 単に臨界状態というときには,純粋物質の状態図において臨界点で与えられる状態をさすことが多い。この状態は液体が存在できる臨界の状態で,この状態の温度より高温では,気体圧縮しても液体にはならない。 (→三重点 )

出典:ブリタニカ国際大百科事典 小項目事典
Copyright (c) 2014 Britannica Japan Co., Ltd. All rights reserved.
それぞれの記述は執筆時点でのもので、常に最新の内容であることを保証するものではありません。

デジタル大辞泉

りんかい‐じょうたい〔‐ジヤウタイ〕【臨界状態】
臨界温度臨界圧力に達したときの物質の状態。液体が液体としてその蒸気と共存しうる限界の状態。
原子炉で、原子核分裂連鎖反応一定割合で継続している状態。

出典:小学館
監修:松村明
編集委員:池上秋彦、金田弘、杉崎一雄、鈴木丹士郎、中嶋尚、林巨樹、飛田良文
編集協力:田中牧郎、曽根脩
(C)Shogakukan Inc.
それぞれの用語は執筆時点での最新のもので、常に最新の内容であることを保証するものではありません。

岩石学辞典

臨界状態
蒸気を等温的に圧縮すると圧力が次第に増加し,飽和蒸気圧に達すると液化し始める.圧力─体積の変化を考えると,液化し始めてから液化が全部終わるまでは圧力は変化しない.さらに高温でこの過程を行い,圧力─体積曲線である温度に達すると液化の始まる点の体積と終わる点の体積が一致する.この点を臨界点(criticl point)とよび,その点に相当する物質の状態を臨界状態という.この時の圧力が臨界圧(critical pressure),温度が臨界温度(critical temperature)である.臨界点では一成分系で液相と気相の区別がつかなくなる.H2Oの臨界点は375℃,20MPa(≒200気圧).

出典:朝倉書店
Copyright (C) 2009 Asakura Publishing Co., Ltd. All rights reserved.
それぞれの用語は執筆時点での最新のもので、常に最新の内容であることを保証するものではありません。

世界大百科事典 第2版

りんかいじょうたい【臨界状態 critical state】
一定量の気体を温度一定に保って圧縮すると,気体の体積は小さくなり,圧力が増す。圧縮を続けると,ある圧力のところで液化が始まる。しかし,ある温度より上では,どんなに圧縮しても気体は液化しない。圧力を加えることによって液化が起こる限界の温度を臨界温度critical temperature,臨界温度で液化の起こり始める圧力を臨界圧力critical pressureという。臨界温度,臨界圧力は,各気体に特有なものであり,気体の量にはよらない。

出典:株式会社平凡社
Copyright (c) Heibonsha Limited, Publishers, Tokyo. All rights reserved.

大辞林 第三版

りんかいじょうたい【臨界状態】
なんらかの状態の限界。
液体とその蒸気とが共存できる限界の状態。これは、その物質が液相・気相のどちらに属するともいえない状態で、液体として存在しうる限界を示す。
原子炉において、核分裂連鎖反応が一定の割合で継続している状態。

出典:三省堂
(C) Sanseido Co.,Ltd. 編者:松村明 編 発行者:株式会社 三省堂 ※ 書籍版『大辞林第三版』の図表・付録は収録させておりません。 ※ それぞれの用語は執筆時点での最新のもので、常に最新の内容であることを保証するものではありません。

日本大百科全書(ニッポニカ)

臨界状態
りんかいじょうたい
critical state
(1)原子力用語 原子炉などで、核分裂の連鎖反応が一定の割合で継続する状態をいう。
(2)熱力学用語 温度、圧力、体積をいろいろ変えて状態図をつくり、気体の液化や液体の気化などの変化をみるとき、ある点からそれがおこらなくなる。この状態を臨界状態という。純粋物質の平衡状態は温度と圧力によって定まり、一般には図Aのように固体、液体、気体の各相の存在範囲が示される。各相の存在範囲の境界を示す曲線は、二つの相が平衡に共存できる温度と圧力の組合せを表している。たとえば圧力一定のもとに固体を加熱していくと、直線DEを横切る温度になったとき融解現象が始まって固体と液体が共存した状態になる。このとき融解させている熱の供給を止めると、固体と液体はそのまま共存し続ける。さらに熱を供給していくと液体の割合が増えていくが、全体が液体になるまでは温度は上がらずに一定のままとなっている。これは、固体と液体との間にはっきりした物理的境界が存在し、固体から液体へ転移するためには潜熱を必要とするためである。このような転移は物質の性質(たとえば密度)を不連続的に変化させるものであり、一次相転移(一次相変態ともいう)と名づけられている。昇華および蒸気(気化)の場合も同様であり、その境界はそれぞれ曲線CD、DPによって表される。しかし曲線DPはP点で終わっている。これは、P点以上の温度と圧力になると液体‐気体転移がもはや不連続でなく、気体と液体の共存状態もなくなり、沸点も潜熱もなくなってしまうためである。このような転移では温度や圧力を変えても物質の状態は連続的に、均一に、もとの状態から最終の状態へと変化し、気体と液体が共存することは不可能となる。このような転移を高次相転移とよぶことがあるが、転移というよりも一つの状態の性質変化とみなしたほうがよい。この場合、物質は臨界状態にあるといい、図AのP点を臨界点、これに対応する温度と圧力をそれぞれ臨界温度、臨界圧力とよぶ。固体‐液体転移にも臨界点があるかどうかについては確証が得られていない。しかし固体‐液体転移でははっきりした原子配列の変化がおこるので、高圧にしても不連続な転移がおこり、臨界点が存在する可能性は少ないと考えられる。液体‐気体転移における臨界点の存在はファン・デル・ワールスの状態方程式からも予測される。図Bはファン・デル・ワールス式の等温線を描いたものであるが、ある温度Tc以下では等温線に極小Aと極大Bが現れる。しかし、ABの部分は、体積が増加すると圧力も増加するという不安定な状態であって実現不可能である。実際の圧力と体積の関係は、面積XAYとYBZとが等しくなるように横軸に平行に引かれた直線XYZによって与えられる。たとえば等温線L―GにおいてはLXが液体、XZが液体と気体の共存、ZGが気体の状態に対応する。温度を上げると極小Aと極大Bがしだいに接近し、臨界温度Tcにおいて両者が一致する。すなわち、この温度以上では気体はいくら圧縮しても液体にならなくなる。Tcおよび点Cに対応する体積Vcおよび圧力Pcすなわち臨界体積、臨界圧力はファン・デル・ワールスの式により
  Tc=8a/27bR
  Pca/27b2
  Vc=3b
と与えられる。水の臨界点では
  Tc=374℃
  Pc=218気圧
  Vc=3.1cm3/g
である。[平野賢一・飯島嘉明]

出典:小学館 日本大百科全書(ニッポニカ)
(C)Shogakukan Inc.
それぞれの解説は執筆時点のもので、常に最新の内容であることを保証するものではありません。

精選版 日本国語大辞典

りんかい‐じょうたい ‥ジャウタイ【臨界状態】
〘名〙
① 臨界圧力で気体と液体が共存し、区別がつかなくなっているときの物質の状態。
② 原子炉などで、核分裂の連鎖反応が一定の割合で継続している状態。〔現代の科学(1957)〕

出典:精選版 日本国語大辞典
(C)Shogakukan Inc.
それぞれの用語は執筆時点での最新のもので、常に最新の内容であることを保証するものではありません。

化学辞典 第2版

臨界状態
リンカイジョウタイ
critical state

一定温度において気体を圧縮すると,一般に高温では気体のまま密度が増すが,低温では液化が起きる.その分岐点を臨界状態という.図はある物質の圧と体積の等温変化を示したものである.低温 Tl においては,低圧気体Aが圧縮されてBに達すると液化がはじまり,さらに圧縮しようとすると,すべての気体が一定圧のまま液化してCに達する.そこからは気体が存在しないので,Dで示したように体積減少に伴って急激に圧が増大する.一方,高温 Th においては圧縮に伴って密度が増加するだけで,液化はみられない.液化がはじめて観測される温度を臨界温度といい,Tc で示した.この温度で液化がはじめて観測される状態を臨界状態といい,そのときの圧を臨界圧,体積を臨界体積という.図ではP点がそれに相当し,臨界点とよぶこともある.Pを頂点とするドーム型の破線に囲まれた範囲では気体と液体が共存するので,この破線を共存曲線とよぶ.

出典:森北出版「化学辞典(第2版)」
東京工業大学名誉教授理博 吉村 壽次(編集代表)
信州大学元教授理博 梅本 喜三郎(編集)
東京大学名誉教授理博 大内 昭(編集)
東京大学名誉教授工博 奥居 徳昌(編集)
東京工業大学名誉教授理博 海津 洋行(編集)
東京工業大学元教授学術博 梶 雅範(編集)
東京大学名誉教授理博 小林 啓二(編集)
東京工業大学名誉教授 工博佐藤 伸(編集)
東京大学名誉教授理博 西川 勝(編集)
東京大学名誉教授理博 野村 祐次郎(編集)
東京工業大学名誉教授理博 橋本 弘信(編集)
東京工業大学教授理博 広瀬 茂久(編集)
東京工業大学名誉教授工博 丸山 俊夫(編集)
東京工業大学名誉教授工博 八嶋 建明(編集)
東京工業大学名誉教授理博 脇原 將孝(編集)

Copyright © MORIKITA PUBLISHING Co., Ltd. All rights reserved.
それぞれの項目は執筆時点での最新のもので、常に最新の内容であることを保証するものではありません。

臨界状態」の用語解説はコトバンクが提供しています。

臨界状態の関連情報

他サービスで検索

(C)The Asahi Shimbun Company /VOYAGE MARKETING, Inc. All rights reserved.
No reproduction or republication without written permission.

アット・ニフティトップページへ アット・ニフティ会員に登録

ウェブサイトの利用について | 個人情報保護ポリシー
©NIFTY Corporation