@niftyトップ

辞書、事典、用語解説などを検索できる無料サービスです。

超越数【ちょうえつすう】

ブリタニカ国際大百科事典 小項目事典

超越数
ちょうえつすう
transcendental number
無理数でない無理数,すなわち有理数係数にもつ代数方程式の根とはなりえない無理数のことである。たとえば,円周率 π=3.14159… ,自然対数 e=2.71828… ,10の累乗を除く整数の常用対数,θ° ( θ は整数値) の角の三角関数の大部分などは超越数である。超越数の存在は,J.リュービルによって,1831年に初めて証明され,e が超越数であることは,73年に C.エルミートによって,π が超越数であることは,82年に F.リンデマンによって証明された。なお 74年に,G.カントルは超越数は代数的数より多く存在することを示した。

出典:ブリタニカ国際大百科事典 小項目事典
Copyright (c) 2014 Britannica Japan Co., Ltd. All rights reserved.
それぞれの記述は執筆時点でのもので、常に最新の内容であることを保証するものではありません。

デジタル大辞泉

ちょうえつ‐すう〔テウヱツ‐〕【超越数】
代数的数でない数。自然対数底(てい)e円周率π(パイ)など。有理数係数とする代数方程式として表すことができない。

出典:小学館
監修:松村明
編集委員:池上秋彦、金田弘、杉崎一雄、鈴木丹士郎、中嶋尚、林巨樹、飛田良文
編集協力:田中牧郎、曽根脩
(C)Shogakukan Inc.
それぞれの用語は執筆時点での最新のもので、常に最新の内容であることを保証するものではありません。

世界大百科事典 第2版

ちょうえつすう【超越数 transcendental number】
有理数係数のどんな代数方程式についてもその根にならない数,すなわち代数的数ではない数を超越数という。有理数から代数的操作で得ることができないという意味でL.オイラーが超越数と名付けた。彼は1748年ころ自然対数の底e,円周率πなどは超越数であろうと予想したが,eが無理数であることしか証明できなかった。1844年,J.リウビルは,は超越数であることを示し,超越数が無限にあることを初めて証明した。その後,G.カントルは集合論を建設し,濃度の概念を用いて超越数は代数的数よりはるかに多いことを77年に示してセンセーションを巻き起こした。

出典:株式会社平凡社
Copyright (c) Heibonsha Limited, Publishers, Tokyo. All rights reserved.

大辞林 第三版

ちょうえつすう【超越数】
代数的数でない数。すなわち有理数を係数とする代数方程式の解とはなりえない数。例えば、自然対数の底 e 、円周率 π など。 → 代数的数

出典:三省堂
(C) Sanseido Co.,Ltd. 編者:松村明 編 発行者:株式会社 三省堂 ※ 書籍版『大辞林第三版』の図表・付録は収録させておりません。 ※ それぞれの用語は執筆時点での最新のもので、常に最新の内容であることを保証するものではありません。

日本大百科全書(ニッポニカ)

超越数
ちょうえつすう
代数方程式の解とはならない数を超越数という。一変数で整係数の方程式を(一変数)代数方程式ということにする。つまり
 a0xn+a1xn-1+……+an-1x+an=0
 (a0,a1,……,anは整数でa0≠0)
の形の方程式が代数方程式である。nをその方程式の次数という。ある代数方程式の解となる複素数(実数の場合を含む。以下同様)を代数的数という。たとえば、,,はそれぞれ
 x2-2=0, x3-5=0, x2+1=0
の解だからいずれも代数的数である。またすべての有理数は代数的数である。しかるに、円周率π、自然対数の底e、またはどんな代数方程式の解にもならないことが証明される。このような複素数が超越数である。
 一般に実数は有理数と無理数に分類されるが、無理数はさらに実の代数的数と実の超越数とに分類されることになる。代数的数の全体は可算無限個であるが、実数の全体は非可算だから、超越数の全体も非可算である。つまり超越数のほうが、代数的数より圧倒的に多い。近年、イギリスのベーカーAllan Baker(1939― )によって、それまでに得られた定理の多くを包合する次のような著しい定理が得られた。α1、……、αnを1でも0でもない複素数とし、1、β1、……、βnを有理数体上一次独立な代数的数とすると、……は超越数である。これにより、前述のπ、eのほか、,,などが超越数となることが、ただちに知られる。[足立恒雄]

出典:小学館 日本大百科全書(ニッポニカ)
(C)Shogakukan Inc.
それぞれの解説は執筆時点のもので、常に最新の内容であることを保証するものではありません。

精選版 日本国語大辞典

ちょうえつ‐すう テウヱツ‥【超越数】
〘名〙 有理数係数の代数方程式の根となることのできない複素数。自然対数の底(てい)、円周率など。
※雫の発見(1939)〈吉田洋一〉直線を切る「代数的数でない数には超越数といふ名を与へてゐる」

出典:精選版 日本国語大辞典
(C)Shogakukan Inc.
それぞれの用語は執筆時点での最新のもので、常に最新の内容であることを保証するものではありません。

超越数」の用語解説はコトバンクが提供しています。

超越数の関連情報

他サービスで検索

(C)The Asahi Shimbun Company /VOYAGE MARKETING, Inc. All rights reserved.
No reproduction or republication without written permission.

アット・ニフティトップページへ アット・ニフティ会員に登録

ウェブサイトの利用について | 個人情報保護ポリシー
©NIFTY Corporation