@niftyトップ

辞書、事典、用語解説などを検索できる無料サービスです。

電波望遠鏡【でんぱぼうえんきょう】

ブリタニカ国際大百科事典 小項目事典

電波望遠鏡
でんぱぼうえんきょう
radio telescope
天体からくる電波をとらえ,その強度,方向,スペクトルなどを測定する装置。光学望遠鏡とはまったく異なる形をしている。観測される電波の波長は 20mから 1mmまでである。通常,電波望遠鏡は,電波を集めるアンテナ,電波を電気信号に変え増幅を行う受信機,電気信号を記録する記録計から成る。アンテナには,おわん型のパラボラ反射鏡 (回転放物面鏡) が用いられ,天体の運動を追尾する追尾装置が付属する。電波は導波管によって受信機内に送り込まれ,低周波電気信号に変換され増幅される。回路は特殊な周波数だけを選び出すよう設計されており,狭い周波数幅に含まれる電波強度を測定する。多数のフィルタを同時に用い周波数幅をさらに細かく分割すれば,原子や分子線スペクトルを得ることができる。増幅された電気信号には,地球大気,アンテナ,受信機内で発生した雑音が混る。天体の出す電波は非常に弱いので,信号は雑音のなかに埋もれている。信号を拾い出すためには,電気信号を磁気テープに記録し,コンピュータによって数分から数時間の観測を足し合せ真の信号を検出する。弱い電波を観測したり,電波源の位置を精度よく決めるには大口径のアンテナが必要である。波長 1cm以下の電波,特に分子の線スペクトルを観測するには,パラボラ表面が精度よく仕上げられていることが必要で,この波長域ではアメリカ,キットピークの国立電波天文台の直径 11mのパラボラが多くの成果を上げている。小口径のアンテナを数多く並べ,全体として一つの観測装置の役割を果すものとして電波干渉計がある。アンテナ間の距離を離すことによって方向分解能を上げることができる。イギリス,ケンブリッジの1マイル望遠鏡は,約 1.6km離れた2つのパラボラを使って,電波源の高分解能マップをつくることができる。また原子時計を使い電波の位相を精密に決めながら独立に2ヵ所で記録を取り,干渉をコンピュータ処理することによって天体の位置を決める大陸間干渉計も実用化されており,角度で 0.0005″の超高分解能が得られている。

出典:ブリタニカ国際大百科事典 小項目事典
Copyright (c) 2014 Britannica Japan Co., Ltd. All rights reserved.
それぞれの記述は執筆時点でのもので、常に最新の内容であることを保証するものではありません。

知恵蔵

電波望遠鏡
天体からの電波を受信する装置の総称。波長が長い電波の場合はテレビのアンテナのようなダイポール列、それ以外は一般にパラボラアンテナが使われる。単一のパラボラアンテナから成る電波望遠鏡の他に、複数のパラボラアンテナを並べて干渉計として使うこともあり、アレイ(array=列)型電波望遠鏡と呼ばれる。国内の代表的電波望遠鏡に文部科学省国立天文台野辺山観測所(長野県)の口径45mの単一パラボラアンテナ電波望遠鏡、口径10mの6台のパラボラアンテナから成る電波干渉計、口径80cmの84台のパラボラアンテナから成る太陽電波観測用の電波干渉計(ヘリオグラフ)などがある。
(谷口義明 愛媛大学宇宙進化研究センターセンター長 / 2007年)

出典:(株)朝日新聞出版発行「知恵蔵」

デジタル大辞泉

でんぱ‐ぼうえんきょう〔‐バウヱンキヤウ〕【電波望遠鏡】
天体からの微弱な電波を観測する装置。巨大なアンテナと高性能の受信機、記録計などによって構成される。単一パラボラ型と開口合成型(干渉計)に大別される。

出典:小学館
監修:松村明
編集委員:池上秋彦、金田弘、杉崎一雄、鈴木丹士郎、中嶋尚、林巨樹、飛田良文
編集協力:田中牧郎、曽根脩
(C)Shogakukan Inc.
それぞれの用語は執筆時点での最新のもので、常に最新の内容であることを保証するものではありません。

世界大百科事典 第2版

でんぱぼうえんきょう【電波望遠鏡 radio telescope】
天体からの電波を観測するためのアンテナ。宇宙は,超高温から超低温,また超高密度から真空に限りなく近い低密度まで,きわめて変化に富む物質の運動の場である。これらの運動に伴い,電波,赤外線,可視光,紫外線X線,γ線にいたる,あらゆるエネルギー電磁波放射・吸収過程が繰り返されている。われわれが今日みる宇宙の姿は,これら電磁波の全波長域からの情報を用いて構築されたものであるが,とくに光(可視光)と電波の望遠鏡に負うところが大きい。

出典:株式会社平凡社
Copyright (c) Heibonsha Limited, Publishers, Tokyo. All rights reserved.

大辞林 第三版

でんぱぼうえんきょう【電波望遠鏡】
天体からの電波を受信し、増幅して観測する装置。パラボラアンテナをはじめとし、対象とする電波に応じた種々の形のアンテナが用いられている。

出典:三省堂
(C) Sanseido Co.,Ltd. 編者:松村明 編 発行者:株式会社 三省堂 ※ 書籍版『大辞林第三版』の図表・付録は収録させておりません。 ※ それぞれの用語は執筆時点での最新のもので、常に最新の内容であることを保証するものではありません。

日本大百科全書(ニッポニカ)

電波望遠鏡
でんぱぼうえんきょう
radio telescope
宇宙からやってくる電波を集め、強め、分析して、宇宙におけるさまざまな自然現象を研究する道具として発達した装置が、電波望遠鏡である。可視光望遠鏡と同様に、大きな回転放物面(パラボラ)等の反射鏡を用いて宇宙からのかすかな電波を一点(焦点)に集め、受信機システムで分析するのが基本である。可視光望遠鏡の場合は、その焦点に拡大レンズを置いて目でのぞいたり写真乾板やCCDカメラを置いて写真に撮ったりするが、電波では波長が長いため、波長が短いミリ波サブミリ波を除いては基本的に焦点面検出はできない。そのかわり、集めた電波を電磁波の波動のままアンテナや電磁ホーンで取り込み受信機に導いて、波のままで強め(増幅)、低周波の電波に周波数変換(ヘテロダイン変換)し、周波数分析(電波分光)や、偏波、強度の測定などを行うことができる。長波長の電波では、パラボラのかわりに長大な放物面柱を用いたり、広帯域アンテナを多数並べたダイポール・アレイなどによる集光も行われる。
 電波望遠鏡の方式としては、大型の回転放物面をもつ単一パラボラ型電波望遠鏡と、多くの集光器(アンテナ)と受信機システムを互いに距離を置いて配し、ケーブルで全体をつなぎ合わせて一つの電波望遠鏡とする電波干渉計がある。遠い宇宙を観測する望遠鏡としては、まずは「集光器」である反射鏡の直径を大きくすることが、より大きな集光力とより高い分解能を実現するために重要である。だが観測する電波源の構造を細かく見分ける能力(分解能)は、反射鏡の直径に比例し観測する電波の波長に反比例するから、光に比べて波長が桁(けた)違いに(1000倍から1000万倍)長い電波では、反射鏡を相当に大きくしても分解能は悪く、ぼやけた電波天体の姿しかとらえられない。そこで空間分解能の不足を補うため、互いに遠く離して設置した複数のアンテナをケーブルでつなぎ、同時に観測して受信電波を合成する電波干渉計が発明された。電波観測は技術的に比較的容易な長波長から高度なエレクトロニクスを要する短波長へと進んだが、現在では地上で観測できる最低周波数である2~30メガヘルツ(波長15メートル~10メートル)から、赤外線との境界で大気を通して観測できる限界である1000ギガヘルツ(波長0.3ミリメートル)付近まで、電波の全帯域を覆って観測が行われている。なお電波の周波数と波長との間には、「周波数(メガヘルツ)×波長(メートル)≒300」という関係がある。[海部宣男]

歴史

宇宙からの電波は、1931年、雷の電波を研究していたアメリカの電波技師カール・ジャンスキーが発見した。独自のパラボラ型電波望遠鏡をつくってジャンスキーの観測を受け継いだのがアメリカの若手電波工学者グロート・リーバーGrote Reber(1911―2002)で、天の川に沿って電波が放出されていることや、いくつかの孤立した電波源が存在することなどを明らかにした。太陽からの電波は、第二次世界大戦中、レーダーの研究をしていたイギリスのヘイJames Stanley Hey(1909―2000)が最初に発見したとされる。宇宙からの電波も太陽からの電波も、電波技術の向上がもたらした偶然の発見である。
 第二次世界大戦の終了とともに、電波天文学は急速に発展した。早くも1946~1948年には、電波観測の空間分解能不足を克服する手段としての電波干渉計が、イギリスのマーチン・ライル、オーストラリアのジョン・ボルトンJohn Gatenby Bolton(1922―1993)らによって開発された。一方、回転放物面の主反射鏡は、観測しようとする電波の波長に比べて十分な滑らかさであればよい。電波天文学初期(1950~1960年代)には波長1メートルから10センチメートル程度の長波長での観測が主流だったから、このころ建設された大型電波望遠鏡はほとんどがパラボラ型やシリンダー型の反射面を軽量の金網によって構成したものだった。反射鏡は光学望遠鏡と同様、天球の動きを追って方向を変えるため、二つの回転軸をもつ架台の上に置いて駆動されねばならないが、軽量の主鏡であれば直径数十メートルの巨大な電波望遠鏡の建設も比較的容易だったのである。1960年代には、イギリス・ジョドレルバンクの76メートル鏡(1957)、オーストラリア・パークスの64メートル鏡(1961)、アメリカ・グリーンバンクの高精度43メートル鏡(1965)などが競って観測を開始し、水素原子の波長21センチ線、パルサー、クエーサー、宇宙背景放射などの大発見が相次いで、電波天文学の黄金時代が幕を開けた。
 波長が短い電波への進出は技術的困難のために遅れたが、1980年ころからの半導体工学、精密工学、大型コンピュータなど第一線の技術の発展によって、電波としてもっとも波長が短いミリ波帯で、巨大で精密な単一パラボラ望遠鏡や干渉計の実現が急速に進んだ。これは、ミリ波帯で宇宙の低温の分子が放つ星間分子のスペクトル線が次々と発見され、星間分子雲(暗黒星雲)からの星の形成や銀河系の構造などが明らかになってきたことに大きく刺激されたものである。日本では東京天文台(当時)野辺山(のべやま)宇宙電波観測所の45メートルミリ波望遠鏡とミリ波干渉計、アメリカではカリフォルニア工科大学のミリ波干渉計、ヨーロッパではドイツのマックス・プランク電波天文学研究所の100メートル鏡、フランスにおかれた国際電波天文学研究所であるミリ波天文学研究所の30メートルミリ波鏡とミリ波干渉計などが建設され、その成果が競われた。また電波干渉計は、高速コンピュータの登場により、天体の電波画像を高分解能で描き出す電波写真儀(開口合成電波干渉計とよばれる)へと発展した。開口合成電波干渉計も短波長帯に進出し、チリで2013年から観測を開始した大型電波干渉計ALMA(アルマ)をはじめとする本格的なミリ波・サブミリ波開口合成干渉計が、銀河系内の惑星形成現場や遠方の銀河の進化の観測などに活躍している。[海部宣男]

単一パラボラ型電波望遠鏡

単一パラボラ型電波望遠鏡は、技術と観測の発展とともに高精度化してきた歴史がある。口径数10メートルから100メートルの巨大な主反射鏡が有効に電波を集めるためには、回転放物面からのずれが観測する波長の10数分の1以下に抑えられなければならない。だが天体を追って駆動されるため重力変形が起き、また太陽光にさらされるなどのため熱変形が起きる。重力変形に対しては、野辺山45メートル鏡で用いられた回転放物面から新たな回転放物面に変形するように反射鏡支持構造を設計するホモロガス変形法が有効で、現在広く用いられている。また電波による鏡面精度の測定、主鏡骨組みの温度を均一に保つ断熱構造などが、最近の高精度の大型パラボラでは一般的である。主反射鏡で焦点に集められた電波は、焦点に置かれた電磁ホーンにより導波管へ取り込まれ、受信機に導かれる。受信の検出感度を決定するのは、初段に置かれた前置増幅器(プリアンプ)ないしはミクサ・プリアンプで、ヘリウムガスなどで極低温に冷やし、内部での雑音電波発生を極力抑えなければならない。センチメートル波では各種のHEMT(高電子移動度トランジスタ)増幅器やその発展であるMMIC(モノリシックマイクロ波集積回路)を冷却して用いる。短波長のミリ波・サブミリ波ではミクサ・プリアンプ方式が主流で、超伝導効果を用いた半導体周波数混合器(ミクサ)によって低周波への変換をまず行い(ヘテロダイン検波)、すぐに上記の低温増幅器で増幅する。
 扱いやすい周波数帯域で充分に増幅された宇宙からの電波は、さらに分析装置へ送られる。受信電波を周波数ごとに細分し、その強度を同時に測定する電波分光器には、レーザーと音響光学効果を応用したAOS(音響光学型電波分光器)方式や、コンピュータによる高速相関を用いた自己相関型デジタル分光器方式があり、スペクトル線の検出、分析に用いられる。音響光学型は野辺山45メートル電波望遠鏡用に3万チャネルという巨大なものが開発されて広く活躍し、ミリ波天文学の発展とともに世界で広く用いられてきた。しかしデジタル技術の発展とともに、最近はデジタル自己相関型電波分光器が音響光学型にとってかわりつつある。そのほか電波の振動面の方向や偏りの程度を測る偏波計、電波強度の速い変化を測定する装置などが、目的に応じて使用される。
 電波望遠鏡の制御と膨大なデータの処理のためには、高速で大容量のコンピュータが必要である。単一パラボラ型の電波望遠鏡は基本としては一時に空の一点からの電波しか受けられないので、電波天体の構造を調べるには次々と多くの点について観測を行い、蓄積したデータをコンピュータ内で解析して画像を合成する。このようにして合成された電波画像が、いわば光学望遠鏡の写真に相当する。しかし現在ミリ波帯では、10から数十のホーンと受信機を並べて組み込むマルチ・ビーム受信機や、天空を連続的に掃いて行きながら適時データを取り込んですばやく画像化する移動観測法も、盛んに用いられるようになった。さらにミリ波・サブミリ波では、ヘテロダイン検波方式と併せて可視光と同様に電波を光子のエネルギーとして受け取る直接検出方式も盛んになっている。熱検出素子である各種のボロメータなど超低温で働く各種の半導体検出器と、それを1000個以上並べた「サブミリ波カメラ」が、すでに実際の観測に用いられている。[海部宣男]

電波干渉計

波長が長いことによる電波観測の分解能不足を補うため、1940年代から1960年代にかけて電波干渉計が発明・開発された。基本は、二つのアンテナ(パラボラ型反射鏡などの集光器)を互いに離して置き、同時に観測した天体の電波をそれぞれの位相を維持しながらケーブルで送り、一つにあわせて干渉させることである。このときの空間分解能は、二つのアンテナの間の距離を直径とする電波望遠鏡の分解能に相当する。ただし二つだけでは集光力・情報量ともに不足なので、多くのアンテナを配置して相互に結合し、一つの電波望遠鏡とする。この場合、各素子アンテナ間の距離(基線長)のすべてと、天球上の目的天体に対するすべての基線の角度だけの情報が得られることになる。さらに地球の自転による電波源の回転も考慮しつつすべてのアンテナ間の受信電波の相互相関をとり、最後に全データをフーリエ変換することによって、電波源の二次元強度分布、すなわち電波画像が得られる。最適な素子配置が得られる場合には、画像の画素数は基本的に(最大基線長÷素子アンテナの直径)2となる。システムは複雑になるが、この方式によって電波天体の微細な構造を直接描き出すことが可能になった。これを、開口合成干渉計という。アメリカのVLA(Very Large Array、超大型電波干渉計)は、直径25メートルのアンテナを27基、40キロメートルの範囲に配置した巨大な開口合成干渉計である。VLAの空間分解能は、光学望遠鏡のそれにほぼ匹敵する。さらに日米欧の共同で建設され2013年から活動を始めたチリ・アタカマ高地のALMA(アルマ、大型ミリ波サブミリ波電波干渉計)は、7~12メートルの高精度パラボラ66基を十数キロメートルの広範囲に移動・配置する高度な開口合成干渉計で、最高空間分解能は大型光学望遠鏡を大きくしのぐ0.01秒角を達成する。長波長の電波でも、国際共同で大陸規模の開口合成望遠鏡をつくるSKA計画が進行中で、すでにオーストラリアと南アフリカを中心にその第一フェーズの建設が始まっている。
 電波干渉計の別の発展として、ケーブルのかわりに高精度の時計信号を媒介として、全地球上の大型電波望遠鏡で同時観測した電波を集め合成するのが、VLBI(超長基線電波干渉計)である。世界ではアメリカのVLBA(Very Long Baseline Array、超長基線電波干渉計)、ヨーロッパ諸国が展開するEVN(European VLBI Network、欧州VLBIネットワーク)、日本と韓国のKaVA(KVN and VERA Array、日韓合同VLBI観測網)、東アジア諸国を結ぶEAVN(East Asian VLBI Network、東アジアVLBIネットワーク)などが活動中で、それぞれ角度で1000分の1秒という高分解能を達成している。今後の方向としては、SKAがすでにそうであるように、開口合成電波干渉計とVLBIとの合体が進むことになる。[海部宣男]
『海部宣男著『銀河から宇宙へ』(1972・新日本出版社) ▽赤羽賢司・海部宣男・田原博人著『宇宙電波天文学』(1988/復刊・2012・共立出版) ▽海部宣男著『電波望遠鏡をつくる』(1986・大月書店) ▽海部宣男著『望遠鏡』岩波講座「物理の世界」(2005・岩波書店) ▽中井直正他編『宇宙の観測2 電波天文学』シリーズ現代の天文学16(2009・日本評論社)』

出典:小学館 日本大百科全書(ニッポニカ)
(C)Shogakukan Inc.
それぞれの解説は執筆時点のもので、常に最新の内容であることを保証するものではありません。

精選版 日本国語大辞典

でんぱ‐ぼうえんきょう ‥バウヱンキャウ【電波望遠鏡】
〘名〙 天体から来る電波を観測する装置。パラボラアンテナ・増幅器・検波器・干渉計・記録装置などによって構成される。

出典:精選版 日本国語大辞典
(C)Shogakukan Inc.
それぞれの用語は執筆時点での最新のもので、常に最新の内容であることを保証するものではありません。

電波望遠鏡」の用語解説はコトバンクが提供しています。

電波望遠鏡の関連情報

他サービスで検索

(C)The Asahi Shimbun Company /VOYAGE MARKETING, Inc. All rights reserved.
No reproduction or republication without written permission.

アット・ニフティトップページへ アット・ニフティ会員に登録

ウェブサイトの利用について | 個人情報保護ポリシー
©NIFTY Corporation